DAl HOC THAI NGUYEN
_ TRUONG DAl HOC KY THUAT CONG NGHIEP

;.
f“' -
_ "BAQ CAO TONG KET —
PE TAI KHOA HOC VA CONG NGHE CAP TRUONG
PIEU KHTEN HE ROBOTIC CO PANH GIA PEN MIEN HAP DAN
Mai sé: T2019-B11

r A i 7\ r ' a3 il - A A b
X4c nhin ciia to chirc chi tri Chu nhiém dé tai

KT. HIEU TRUONG (5, ho tén)

) HIEU TRUONG ”

Tran Thi Hii Yén

Thai Nguyén, 07/2021




NHUNG NGUOI THAM GIA THUC HIEN BE TAl

~ ThS. Nguyén Vinh Thyy - Khoa Dién — Trudng PHKT Céng nghiép.

ThS. P4 Thi Phuong Thio - Khoa Pién — Trudng PHKT Coéng nghiép.

ThS. Nguy&n Thj Chinh- Khoa Dién — Truong PHKT Céng nghiép.

ThS. Lam Hing Son- Khoa Dién - Truxomg PHKT Cong nghip.

I'hs. N guyEn ang Quang - Khoa tign — Truong DHKT Cong nghiép.
ThS. Duong Hoa An - Khoa Bi¢n — Treong PHKT Céng nghiép.

ThS. Vit Xudn Tung - Khoa Dién — Trudng PHKT Cong nghiép, - SR ——

ThS. Trin Thi Thanh Thao - Khoa Dién — Truong PHKT Céng nghiép.
ThS. Duong Quynh Nga - Khoa Dién — Truong PHKT Céng nghiép.
ThS. Nguyén Vin Huynh - Khoa Pién — Truong PHKT Céng nghiép.




N

- ~ TABLE OF CONTENTS i
,,,,,7,,;5;1'&13%:@"1::"::;:-:—:;:-:-: -------------- = 77,777,7717 R

.RRQQE_R&MM_[NQ ___________________________________________ e .

BN Development of ADP Structure C 4

' I 2. Algorlthms of ADP 7

1 2.1, Offline iterative algorithm 7

"1"2"5'6}{1'1'65 adaptive algorithm s T

1.3, Application of ADP T e

"i'ﬁ"(féﬁéih'éiéii"'"""""" """"""""""""""""""""" T CTT """"""" )

CHAPTER218 """

: ADAPTIVE DYNAMIC PROGRAMING BASED OPTIMAL CONTROL :

F OR A ROBOT MANIPULATOR

"52' 1. Dynamic Model of a Robot Manipulator and Control Objective 7 Ty

'"2' 2. Adaptive Dynamic Programming Approach for a Robot Manipulator i

33T A Algorim T I
- [227RISE Foedback Control Design 7T e T

"2' 3. Offline Simulation Results T A TR

: CHAPTER 3

-----------------------

 ADAPTIVE  DYNAMIC PROGRAMMING ALGORITHM FOR 30

E UNCERTAIN NONLINEAR SWITCHED SYSTEMS

......................

3 1. Problem Statement P30

'3"2'"(-3'6}1'{{6'1'1')—&'@}{ """"""""""""""""""""""""""""""""""""""""""""""""""" """" 31
3.3, Simulation Results 77T e f39 T
"E-(')"I\J_ﬁff;ﬁéf TON AND DEVELOPMENT DIRECTION OF THE PROJECT |~ 41
"iiﬁifﬁliﬁﬁéiééi """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" 437




TRUGNG PAI HOC
KY THUAT CONG NGHIEP B
Don vi: Khoa Dl@n e T _

1. Théng tin chung:

- Tén d€ tai: Didu khién hé Robotic ¢6 danh gi4 dén mién hip din

- M sb: T2019-B11 | o | | o

- Chui nhiém dé tai: TrAn Thi Hai Yén.
- - Co-quan chirtri: Treong Pai hoc K§ thujt Cérg righiép. ~—
- Theoi gian thue hién; 07/2019 — 07/2021
2. Muc tiéu:

He¢ théng chuyén dong robot 1a mét hé théng ¢6 tinh phi tuyén manh va rang budc cao,

céc tham sb dong luc hoe nhu md men quén tinh, khéi luong tai thudng blen d01 va

khong duge xac dmh chinh x4c. Vlec didu khign Robot bdm chlnh x4c quy dao dat Vo1
cac diéu kién nhidu tac ddng bén ngoai 1 khéng biét truce cling nhu khang duoc nhiéu
noi ciia hé théng sinh ra 12 didu ludn luén duge quan tdm cia cac nha nghién ciu. Viée
giai quyét bai toan didu khién hé Robotic ¢é ddnh gia dén mién hip din 12 noi dung cén

duoc giai quyét khi dé cép dén nang cao chét lwong diéu khién,

3. Két qua nghién ctru:

Téc gia thuc hién md hinh héa déi tuong didu khién, dé xuit cdc thuat todn didu khién
cho dbi tugng didu khién, mé phéng kiém chirng két qua. Céc két qua thu dugc cobng bd
bing céc bai bdo québc té .

4. San phim:

- Sén pham dao tao:

- S&n phdm khoa hoc: 02 bai bao ISI/Scopus Q2




- San phim ting dung:

5. Hiéu qua: N

———K&tqua nghiénctuctia nhém tac gid-dugccdng bo-trén-cie tapchikhoa hoeeduy tin

N AL o TQAT/Q
IIdIIT LIUIIB AT TV 1Ty 175 Pub

6. Kha ning ap dung v phuong thirc chuyén giao két qua nghién ctru:

sinh nganh K§ thuét diéu khién va Tu dong hoa, Cac két qua cua d8 tai c6 thé st dung

d_é huéng dén_dé tai luén van cao hoc cho hoc vién nganh Ky thudt diéu khién va Ty

dong hoa.
Ngiy 15 thang 7 nim 2021
Co quan chii tri Cht nhiém d@ tai
KT.HIEU TRUONG

16U TRUONG

Trin Thi Hai Yén




THAI NGUYEN UNIVERSITY
OF TECHNOLOGY
__Faculty Electrical Engineering

%~ 1, General informafion:

- Project title: Robotic Control System considering the Attraction Domains,
. Codenumber T2019-BoH
- Coordinator: Tran Thi Hai Yen

- Implementing Institution: Thai Nguyen University of Technology.
- Duration: From 07/2019 — to 07/2021.

2. Objectives:

- The robof motion sysfem is a system with solid nonlinearity and high constraints.
Dynamic parameters such as a moment of inertia, load mass are often variable and not
precisely determined. Controlling the Robot to follow the exact trajectory set with the
conditions of unknown external disturbances and resist the internal disturbances of the
generated system is always the concern of the researchers. Solving the problem of
controlling the Robotic system with an assessment of the attraction domain is the content }
that needs to be solved when it comes to improving the control quality.

3. Researchresults:

The author performs modeling of control objects, proposes control algorithms for
control objects, simulation verifies the results. The results are published in international
journal articles.

4. Products;

- Training products:
- Scientific products: 02 ISI/Scopus articles (Q2).
- Application products:

5. Effects:

Research results of the authors group are published in prestigious scientific journals in
the ISI/Scopus list.
6. Transfer alternatives of reserach results andapplic ability:

Provide specialized reference materials for students, graduate students, PhD students in
Automation Engineering, The research results can be used to guide the master thesis for
graduate students in Automation Engineering.

July 15, 2021




CHAPTER 1
—-.. —. .. OYERVIEW OF RESEARCH ON ADAPTIVE DYNAMIC PROGRAMMING.. .. ...___|

T Dynarnic systems are universal in nafure. Stabilify analysis of dynamic sysiems |

has been a hot research topic for a long time, and a series of methods have been put

forward. However, researchers in control theory field not ’01‘1’1}1' devote to guarantee the

stability of the control system, but also to acquire the optimal solution. When it came to

the 50 s and 60 s, because of the development of the space technology and digital
develotied sl ag———"_ |

important subject branch, named optimal control, emerged. It can be more and more

comp

extensively applicable in the space technology, system engineering, economic.
management and decision, population control, multistage process equipment
optimization, and many other areas. In 1957, Bellman presented an effective tool the

r dynamic programming (DP) method, which can be used for solving the optimal control -

problem. The Bellman principle of optimality is the key of above method, which is S
described as: An optimal policy has the property that whatever the initial state and initial ;
- decistonrare;-the remaining-decistons must constitute amoptimat poticy with regard to a

the state resulting from the first decision. This principle can be summed up in a basic
recurrence formula. When solving the multistage decision problem, we should reverse
recurrence. Therefore, this principle can be applicable extensively, such as discrete
systems, continuous systems, linear systems, nonlinear systems, deterministic systems,

stochastic systems, and etc.

Next the DP principle is introduced in two cases respectively: discrete systems

and continuous systems. First discrete nonlinear systems are considered. Suppose that

the system dynamic equation can be described as

x(k+1)= F(x(k),u(k), k), k=0,1,---, (1)




where x € R"represents the state vector of the system and u € R™ is the control input

.. vector. The corresponding cost function (or performance index function) has the. form. .. .. ... .

as

J(ﬂz‘)ﬁ)=§mmu ), %) @)

~ Where x(k) = xiis given, 1(x(k), u(k), k) is called the utility function, v is the discount

—————to-BeHman-principle; the-minimum-cost-of any-state-fromr time-k-consists-of twoparts—————

factor with 0 <vy <1. The objective of dynamic programming problem is to find a control

sequence u(k), k =1, i+1, - « -, so that the cost function in (2) is minimized. According
One is the minimum cost at time k, and the other is the accumulated sum of the minimum
cost from time k + 1 to infinity, that is

u' (k) =argmin,, {l(x(k),u(k)) +yJ (x(k + 1))} 3)
At the same time, the control policy u(k) at time k achieves the minimum, i.e.,

u (k) =argmin,,, {l(x(k),u(k)) +yJ (x(k + 1))} (4)

- “Now we consider about the optintal control problem of nonlinear continuous-fime (fime-

varying} dynamic (deterministic) systems, which can be described by
() = F(x(t),u(t), 1)t 2 1, | (5)

where F(x, u, t) is any continuous function. The objective is to choose the admissible
control u(t) such that the cost function (or performance index function) achieves the

minimum.

Jx(0),0) =[] 1(xe(z), u(r))de (6)

In general, we can transform the continuous-time problem into a discrete-time problem
by using the discretization method, and then use the discrete dynamic programming

method to find the optimal control solution. When the discretization time interval tends

to be zero, both of them will tend to be consistent. With the application of the Bellman. .. . .

optimality principle, we can get the continuous form of DP as
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From above equation, we can see that J (x(#),t) is a first order nonlinear partial

differential equation with independent variable x(t), t. In mathematics, we call it as

Hamilton-Jacobi-B el:hﬁ-a.n--( HIB) equationn.

If the system is linear and the cost function has the quadratic form with respect to the

state and control input, the optimal control can be expressed as a linear feedback of the

states, where the gains are obtained by solving a standard Riccati equation. However if
the system is nonlinear and the cost function does not have the quadratic form with
respect to the state and control input, we have to solve HIB equation to achieve the
optimal control. However, it is very difficult to solve HJB equation. In addition, DP

method has obvious weaknesses. With the dimension of x and u increasing, it is often

computationally untenable to run true dynamic programn;ing due to the backward
numerical process required for its solution, i.e., as a result of the well known “curse of
dimensionality” [1-2]. In order to overcome these weaknesses, Werbos first propose the
framework of adaptive dynamic programming (ADP) [3], in which the idea is to use an
approximate structure of function (such as neural network, fuzzy model, polynomial,

etc.) to estimate the cost function and to solve DP problem forward-in-time.

In recent years, ADP scheme has received a widespread attention. A series of synonyms
arose, for example, adaptive evaluation design [4-7], heuristic dynamic programming
[8—9], neuron dynamic programming[10] adaptive dynamic programming [12] and
reinforcement learning[13], etc. In 2006, National Science Foundation organized “2006

NSI' Workshop and Outreach Tutorials on Approximate Dynamic Programming”

seminar, where it was suggested that ~the kind of method is called

“Adaptive/Approximate Dynamic Programming™. Bertsekas et al. summarized the

@




neuron dynamic programming [10—11]. They introduced the dynamic programming, the
_structure of neural network and the training algorithm, and presented many effective.. . . _. ..

- methods for application of neuron dynamic programming. Si-et al. discussed the

_ control theory, operational research and statistics. In [15], Powell showed how touse——— - —-

ADP scheme to solve deterministic or stochastic optimization problem, and pointed out
the development direction of ADP scheme. Balakrishnan et al. summarized the methods

of designing feedback. controller-for dy-namic-nsy-stems by using- ADP before, with-the-———-—-

consideration of two cases i.e. for model-based systems and for model-free systems in
16. Reference [17] discussed ADP scheme from the view of whether requiring initial
stability or not. Based on the research achievements of our group and the previous

studies, this paper summarizes the latest development of ADP scheme.
1.1. Development of ADP Structure
In order to execute ADP scheme, Werbos proposed two basic structures: heuristic s

dynamic programming (HDP) and dual heuristic programming (DHP). The structures

are shown in Fig. 1 and Fig. 2, respectively [3].
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HDP is the most basic and widely used structure of ADP. The purpose is to estimate the

_ ... .system cost function. Generally_three networks: critic network, action network and . = .

—— model network-are-adopted. The output of the critic network is used to estimate the cost
_ fumetion Hoc)—T} : » , ] Iationshin_t
- for the. next-time. But the DHP is a method for estimating the gradient of the cost .

function. The definition of action network and model network is the same as the HDP,

and output of the critic network is the gradient of the cost function, 8J(x(k))/ox(k).

ADHDP and ADDHP. The main difference from DHP and HDP is that the input of critic

——————Werbos—further—gave—two—other—versions—called—actiondependent—erities”;

network is not only dependent on the system states, but including the control action. On
the basis of that, Prokhorov and Wunsch presented two new structures: globalized dual
heuristic programming (GDHP) and action dependent GDHP (ADGDHP) [18], whose
characteristic is that the critic network can estimate not only the cost function itself but
also the gradient of the cost function. All of the above ADP structures can be used to

solve the optimal control policy, but the computation burden and computation precision

“are different. IDP is simple relatively. The computation speed is fast, but the
computation precision is low. As for GDHP, the computation precision is high, but the
calculation process need more time. The specific comparison is discussed in detail in

[18].
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With the further development of ADP scheme, the two network structures with both

_..critic network and action network are not needed anymore. Padhi et al. presented single. . ..._ .}

network-adaptive-eritic (SNAC) methodThe-structure-is shown-in-Fig-3+Theaction

aotyaragals 30 Tafd g d moaler gt guatyeraady 20 Troget 300 QORTA(™ cnlingmn Thoa aafesard AF Agogin
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i mtorele e tha gradiant of oot Braetiam doafanad ae ametate trantar ey = AT w1l Swi
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- This single network structure can reduce the computation burden and eliminate the

approximation error of the action network, But the precondition of using SNAC scheme

is that the optimal control policy can be explicitly expressed through the state vector and

costate vector. Therefore; this- method can be-only used to selve the optimal contrel—------

problem about linear systems with general quadratic form cost function or affine
nonlinear systems. Because ADP scheme for continuous systems is developed on the
basis of that for the discrete systems, the structure for continuous sys-tems is roughly the
same as that for discrete systems. The difference is only that the iteration of variables is

running in the continuous space.
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Fig. 3 The SNAC structure

With the further development of ADP scheme, the two network structures with both
critic network and action network are not needed anymore. Padhi et al. presented single
network adaptive critic (SNAC) method. The structure is shown in Fig. 3. The action

network is left and only critic network is kept in SNAC scheme. The output of critic

network is the gradient of cost function, defined as costate vectbrri(rl;i; 5] (x(k))/é‘:ii(rlé)j S

o




This single network structure can reduce the computation burden and eliminate the

. approximation error of the action network, But the precondition of using SNAC scheme. . ... __ _|l

is-that the optimal control policy can be-explicitly expressed through the state vectorand

i wp tha maadiias o] oAoada]
costate-vector—Therefore;this-method-can-be-onlyused-to-selve-the-optimalcontrol
i
1 anthogonoral myradratis Fojrma  amad P ot oia Faal
problem about-linear systems—with—gencrar quadratic—form——cost Tunctron—or —atiine

—nonlinear systems. Because ADP scheme for continuous systems is developed on the

basis of that for the discrete systems, the structure for continuous systems is roughly the

same as that for discrete systems. The difference is only that the iteration of variables is

-running in the continuous space.- - - - - . . . e -

1.2, Algorithms of ADP

The algorithm of ADP experiences a process from offline iteration to online update

realization. The theoretical research is mainly concerned with the stability analysis and

the proof of convergence.
1.2.1. Offline iterative algorithm

Murray et al. first proposed an iterative ADP algorithm for continuous-time nonlinear

X=f(0)+gxux(t,)=x, (8)

The corresponding cost function has been defined as (6), where

I(x,u) = O(x)+u'R(x)u . In this case, the optimal control can be expressed as

aJ (x) J )

u (x) = —%R"(x)g%x)[ 2

J'(x) needs to be solved from the HIB equation (7). But we know the partial differential

equation is difficult to find out an analytical solution so the following iteration algorithm
is proposed. At first, an initial stable control policy is given, and then an iteration process

is running between the following two formulas,




u(x)-——R"‘( e )(‘”(")] an -

Murray et al. gave the convergence analysis of the iterative ADP scheme and the

—————stability prool-of the-system-in [12].- This-was-the first time to-prove-that-the-iteration

algorithm from an initial stable control policy can guarantee the stability of system and

the convergence of iterative performance index mathematically, which is a great break

through in ADP theory. Then Abu-Khalaf and Lewis studied about the optimal control
problem of continuous nonlinear systems with saturation constraints [20], and proposed
—an-iterative- ADP-algorithm-based-on-the-generalized- HIB-equation—An- approma’cei‘
optimal saturation controller is obtained as a result, and the convergence of the algorithm i
- is proved strictly. Comparing the iteration ADP algorithm with [12], the policy iteration -

algorithm was used in [20], in which the policy equation is updated after each iteration.

However, value iteration algorithm was adopted in [12], in which the value function is
updated after each iteration. For nonlinear discrete-time systems, Lewis and Zhang
proposed an ADP iteration algorithm [21-23], which does not require an initially stable

~ ___p_gli_c__y_._gppmsicﬁe[t_he fo_l_lowingﬂdiscre;_‘_ce-time system

x(k+D=tx{kN+e(xk)) u(k) (12)

The corresponding cost function is shown as (2), where

y=1,1(x,u) =x" (k)Qx(k)+u" (k}Ru(k)Q and R are positive definite matrices. The
control objective is to find the optimal control policy so as to make the cost function
minimum. This iteration algorithm starts from the initial value function Vo(-) = 0, and

the iteration process is running between the control policy and value function,

1o v, (x(k)
u, (x(k) R g((k))[ Fore ] (13)
V., (x(I)) = (k)" Qx() + v (x())Rut (x(k)) + ¥, (x(k + 1)) (14)

Where:

x(k+D=fx &) +gx k) u{it(xk))

o0




Zhang et al. first proved that the iterative control policy converges to the optimal one
_and the value function sequence converges to the optimal cost function in theory. That.

is-to-say, all admissible control strategies achieve the minimum-among-all the cost

A 5 ey
.
>

- Reference [22] employed HDP iteration algorithm to solve the optimal tracking control

problem for a class of discrete systems. Due to the problem that the tracking dynamics

may lead to the existing cost function tending to infinity, a new cost function needs to
defi

into the optimal regulator problem and then the iterative HDP algorithm is introduced

to obtain the approximate optimal tracking controller. S

On the basis of literature above mentioned, [24—26] presented an approximate optimal
control scheme via the ADP-based method for nonlinear time delay systems. Consider

the discrete time delay system as

x(e+1y=f(x(k-0,), -, x (k- 0,,.)) +
1 € T 10 - 20 | Y7 W —
x(k) = A(k)y—0, <k <0

R
H—
wh

S

|

Ry N

Where A(k) is the initial state, o,,i = 0,1,---,m are the time delays and satisfy
0=0, <o, <+ <o,, which are nonnegative integers. The corresponding cost function

shows as (2). The control purpose is to find the optimal control policy to make the cost
function minimum. First of all, an initial value function V () = 0 is given. For any

given initial state A(/k) and initial control S(k)}, one can begin to find the optimal

control from i = 0. Then the HDP iteration algorithm is running among the control

policy, value function, and system states.

u,(k) = arginf (X" (YO +u" (k) Ru(ly +V, (x(k +1))} (16)

V(x5 (k)= x, () Ox, (k) +u (Y Ru (k) +V (x (k+1) A7)y

o=




x,(t+1) =1

£ (4 ) vt = Vo (18)
J \'A'l'\" “a ) RN frr}} ! R
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w(0,0<1<k

X[y =A),—0, X0

The convergence of the iteration algorithm is also proved. When { — <0 it can be seen
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ADP scheme is also used to solve differential game problem forward-in-time [27-32].
During thé system optimization“design, we Vusually require the control variables to make
the performance index minimum on the one hand. On the other hand, when the affect of
the disturbance is adequately large, we do require the disturbance variables to make the
performance index maximum simultaneously. Or we can say that one side chases, and

another side escapes, which leads to the bilateral optimization problem of dynamic

_systems, namely, differential game problem. , _

Next, we utilize the two-person-zero-sum game as an example to describe how to use
iterative ADP scheme to solve differential game problem. Consider the following

system.
x=f(xX)+g(x)u+k(x)w (19)

with the cost function as
JCeu,w,t) = [T 1Gx(0),u(z), w(r))dz (20}

The objective of controller u is to make the system cost function (20) minimum, while
the controller w is to achieve maximum of the cost function. So we need to define the

upper bound function and the lower bound function respectively as

uel[t,=) welb[/,w)

i
[«m]

Y IR T

V(x)=inf sup J(xuw,w)y — (2O)




V(x)= sup inf J(x,u,w) (22)

wel [1,m) welift,)

The corresponding control is defined as (i, w) and (u,w)_respectively. So we have

IZf I . A M a3
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P =o a1, w); V) =J 0wy H V- (x)and F{x)exist,and F o)==V}

is safisfied, it can be concluded that the optimal it can be concluded that the optimal

control pair (u",w") of the two-person-zero-sum game exists, namely, the saddle point

exists. Assuming that the saddle point exists, Lewis et al. studied the two-personzero-

sum differential game problem of discrete linear systems and continuous affine nonlinear

systems by using iteration ADP scheme and combining with Ho control [27-29]. This |

iteration scheme was divided into inner loop iteration and outer loop iteration. Firstly
given a stable control v, we implement the inner loop iteration to update wi. After -

convergence of w',u,, can be updated in the outer loop. Then the algorithm goes to the

inner loop iteration again, until the value function converges to the optimum, uj
converges to u , and w converges to w . In [30], the non-affine nonlinear two-person-
zero-sum differential game problem in finite time domain is discussed, in which the non-

affine nonlinear game problem is decomposed into a series of linear game problems. It

is worth noting that the above researches are based on the assumption of the existence

of saddle point. However, in practice, the saddle point may not exist for some nonlinear
two-person-zero-sum game problems, namely 7(x)# ¥ (x). So we have to obtain the
hybrid optimal solution. Reference [31] first concerned how to solve the hybrid optimal
solution V°(x),V(x) < ¥'(x) < V(x)x by using iteration ADP scheme, when the saddle
point does not exist. Obviously, this method can also be applicable to the case of the
existence of saddle point. In the practical application, the systems are usually needed to
achieve a certain performance index in a finite time, such as the implementation of a
stabilization problem or a tracking problem. But the existing results based on ADP
scheme mostly concerned the approximate optimal control problem in infinite time

domain. An ADP-based optimal control scheme is proposed in the finite time domain in

[33—34] in order to deal with above problem. The optimal control policy can be obtained

by an iteration method, which makes the cost function of the system close to the optimal

=
H>
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P

!
Wl N e |




value infinitely in a bound e and the number of optimal control steps are also obtained.

- The optimal-control problem in finite time domain opens up a new field for-the study of - — -

ADP scheme which has-yet to be further studied. For example, the stabilization or

tracking probiem of continuous Systems and time detay systems needs to be solved in

finite time domain.

1.2.2. Online adaptive algorithm

In recent years, some new ADP algorithms have been presented by researchers. These

~algorithms no longer use offline iteration, but take online adaptive way to achieve the

optimal control solution [35—38], which overcomes the shortcoming that once the
system’s parameters change, the iteration algorithm needs to be calculated ofiline again.
Vamvoudakis and Lewis proposed an online adaptive update algorithm based on polircy”
iteration to solve the optimal control problem of continuous nonlinear systems, and
proved the stability of this online adaptive algorithm in theory in [35——3 6]. The kind of
online adaptive algorithms also was applied to discrete systems. Using the onliné
adaptive algorithm, [37-38] studied the optimal stabilization problem and the optimal

tracking problem of a class of discrete affine nonlinear systems.

T e

Now we introduce the basic principle of the online adaptive algorithm for continuous
systems. The basic ideas for discrete systems are similar to that for continuous systems.

Considering the space limitation, the detailed description is omitted here.

Consider a continuous affine nonlinear system described as (8), with the cost function

as (6). The corresponding Hamiltonian function is

H(x,u,J,)=10c,u)y+ I (f(x)+ g(x)u) (23)

where J_is the partial derivative of the cost function J(x) with respect to x. When the

control policy and cost function get the optimal value, the HIB equation is satisfied, that

s H (x,u',J:_) = (}. Generally we construct the critic network and action network by

neural networks, respectively, shown as

Jx)=W ¢ (x)+¢,

.

%M




u(x)=W,4,(x)+e, (25)

~ where W.and W, are the neural _n?t\&ar'laz—t—r'g_e_t- ;/el_gh?s:q)c_(_) and ( (i)a- ( : )_afé the activation

functions, & and &, are the bounded approximation etrors of neural network.

into Hamiltonian function (23), we can get H ( X, U, Pf/) = e_. The goal of critic network

is to make e.= 0, so as to satisfy HIB equation, which realizes that the output of critic

—. network approximates the optimal value of the-cost function. -  --

The actual output of the action network is expressed as V(x)= Wj';ﬁc(x) . The goal of

action network is to realize that the output approaches the approximate optimal control

policy, which is decided by the output of critic network, where V¢ (x) is the partial
derivative of ¢ (x) with respect to x. The difference between the outputs of these two

networks is defined as ea. Then the target of action network can be expressed as e, = 0.
Based on the above ideas, we need to design weights updating rules of critic network

and action network and make the weights of two networks to update together. :

¢
:

The weights of neural network are adjusted by using the online adaption algorithm. Over
time, the weights of neural network converge finally, which realize that the output of
critic network gradually approximates the optimal cost and the output of action network
approximates the optimal control policy. We can prove the convergence of the weights
and the stability of the system based on the online adaptive algorithm by Lyapunov

theorem,

In order to relax the requirements that the system model is completely or partially
known, Dierks et al. proposed an online system identification scheme for discrete affine
nonlinear systems in [39]. In this scheme, the system dynamics were reconstructed by
the identification structure of neural network based on the uniform approximation of

neural network, as shown in Fig. 4.




Then we can use the ADP-based method to search the solution of optimal control policy.

_ . _Zhang et al. proposed a data-driven robust approximate optimal tracking policy fornon- _ __

—+ afline nonlinear systems-in [40]. The data-driven model with-the available data-isused |

And anovel robust term is designed first to ensure that the tracking error asymptotically

converges to zero.

Jr \ i

Unknown nonlinear system NN identifier
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¢

Fig. 4 NN identification structure

In the same way, to solve differential game problem with ADP-based method has come
to online learning direction. Reference {42] presented an online adaptive control scheme
based on policy iteration for the multi-personnon-zero-sum differential game problem.
The cooperations and competitions coexist for each controller in the multi-player-non-
zero-sum games, which leads to the intercoupling Hamilton-Jacobi (HJ) equation. The
scheme proposed by Vamvoudakis et al.-can-approximate-optimal-strategies-and Nash———— —

equilibrium point in real time based on the online adaptive algorithm. For each




controller, there is a corresponding critic network and action network. These networks

. _. ... update synchronously, and also guarantee the stability of the overall closed-laop system.. _ . .. _ _|

It is worth noting that the critic network and action network are both used in above

-—————methods-Besides; it requiresa giveninitial stable control-in-general in-order to-guarantee ————

the stability when the system is operating online. To relax these two conditions, [41]

proposed online control scheme with a single network, which is used to deal with the

optimal control problem of continuous affine nonlinear systems.In the scheme, only

~ critic network is adopted to approximate the cost function of the system and the contro]

network-is-emitted—The-estimated-value-of the-eptimal-control-policy-can-be-obtained——
directly through the calculation of the equation #=-R"g" (x)V4 (x)W. /2 and the
output of critic network. A new parameter training algorithm was presented in [41],
which can remove the requirements of the initial stability. The boundedness of system

states can be guaranteed in the process of online learning in the circumstance that the

initial control is not an admissible control.

1.3. Application of ADP

Comparing Wwith existing other optimal confrol methods, ADP schemeé has™its own
unique algorithm and structure, which overcomes the shortcoming that the classical
variational theory cannot deal with optimal control problem with the constraint
condition of control variables in closed set. Same as maximum principle, ADP scheme
is not only suitable for dealing with optimal control problem with the condition of open
set constraints, but also of closed set constraints. In fact, maximum principle just offers
the necessary condition of optimal control problem, while DP and ADP scheme offers
the sufficient conditions of optimal control problem. However, it is very difficult to apply
DP scheme directly because of the difficulty to solve HIB equation and “curse of
dimensionality” problem. Therefore, as the approximate solution of DP scheme, ADP
scheme overcomes DP scheme limitations, so it is more suitable for application to the

system with strong coupling, strong nonlinearity, and high complexity.
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Power system belongs to a kind of highly complex multivariate nonlinear systems,

_. ... which is difficuit to control. Though the dynamic characteristics change obviously with __

+1a + + A [ .
in-the time-varying operation-condition{orin-ease-of different faults)—Speecially with-the
el + ~F + g Y I |-FY 11 . + 1
development of smart grid, the traditional linearization- method cannot fully satisfy the

new demands. It is urgent to develop smart node, which can realize global optimum and

coordinate control (including breaker, recloser device, transformer substation, etc). The
optimization control based on ADP scheme offers the theoretical foundation, which has

 been app_l-ied- suéceésfﬁl—ly-_-iﬁ recent yearjs-.-' For éﬁ(ampié, -[43—]_-appli'e'é_1 HDP scheme to-the———..——

real-time control of a single turbo generator power system, which overcomes the
shortcomings that the performance of operating power system cannot be guaranteed by
using the lead-lag compensator based on traditional phase complement theory in the
frequency domain. Reference [44] applied ADP scheme to the control of synchronous
generator, which replaces the traditional automatic voltage regulator. Reference [45]
applied HDP method into the excitation control of generators in the multi-machine
power system. Reference [46] applied DHDP method into static reactive power
- —-—compensator to realize additional damping control. Reference [47] proposed the DHDP
structure and algorithm based on iterative PID neural network. This structure can utilize
existed PID parameters to serve for the selection of initial values. The simulation of
additional damping control of the static var compensator in the 4 machines 2 regions
system showed that the proposed algorithm can restrain the low frequency oscillation of

inter-power-grid.

The research of intelligent traffic system is a hot topic in the field of optimal control as
well. The traffic signal control system of intelligent traffic system is a complex large
scale nonlinear system, which not only includes the block traffic system consisting of
intersection signal light regulation, but also the urban traffic network coupled with
on/off-ramp of city express way and block traffic network. In recent years, ADP scheme
has been preliminarily applied to the optimization control of a single intersection traffic

signal and on-ramp signal of the express way [48=53]. At present, the advanced urban————
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_ _Scheme. . __ _

traffic signal control and management system adopts the hierarchical distributed control

The upstream or downstream traffic states are acquired by the communication among

- ——————the-multi-agents;- which—ean-be-utilized to—construettheir-ownperformanee—index —— —|

function. Thus, the mutual coordination and overall performance optimization are

realized in the process of learning and optimizing of above performance index

function[54]. Besides, ADP-based optimization control has been applied successfully in

_the field of avigation systems [55] aircrafts [56—57], communication systems[58], etc.

1.4. Conclusion
The optimal control of nonlinear systems has been on¢ of the hot and difficult topics in

control field. ADP scheme combines with neural network, adaptive evaluation design,

enhancement learning, and classical dynamic programming theory as a new method of
approximate solution in optimal control problem. ADP scheme can overcome the “curse
of dimensionality” of DP scheme and obtain the approximate optimal closed-loop

feedback control law. So it is considered as an effective method of solving optimal

‘control ofnonlinear systems and attracts a lot of researchers” attention. Therefore, further
research of ADP theory and its algorithm has important theoretical significance and
practical value for solving the optimal control problem of nonlinear systems. The study
of ADP scheme is still in the rise period. We hope that the readers would have a
preliminary understanding about ADP scheme through this paper, and ADP scheme

would be applied to solve various optimization problems in science and engineering
fields.
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CHAPTER 2
. ADAPTIVE DYNAMIC PROGRAMING BASED OPTIMAL CONTROL FOR. __ _
A-ROBOT-MANIPULATOR

developed not only in practical applications [59,60], but also in theoretical analysis .

[61-64]. The main challenges of the control design have been considered, such as

robust adaptive control problem, motion/force control, input saturation and full state

eenetﬁai-ﬁ-ts--[_6_-5-,66]:1ﬁd the pafhii)l'anni_.il_g p_ro_blerfi._ [6.7]..;.Sev.ei:aii control techniqfles e

have been employed for manipulators to tackle the issue of input saturation by adding

more terms into th_e designed control input considering the absence of input

Constraint [62], [63], [67-71]. In [62], authors proposed a Vnew reference of control

system due to the input saturation. The additional term world be computed based on

the derivative of previous Lyapunov candidate function along the state trajectory

under the control input saturation [62]. Furthermore, authors in [63] give a new

approach to address the input constraints as well as combining with handling the 4
______disnmbanees._The,_pmpnsedjliding__.mr&ewamnmmdme_SaLmncﬂgmﬁjm__._____ 3

variables. In order to realize the disadvantage of state constraints in manipulator, the

authors in [65,66] proposed the framework of Barrier Lyapunov function and Moore-

Penrose inverse, Fuzzy-Neural Network technique. The equivalent sliding mode

control algorithm was designed then the boundedness of control input was estimated.

The advantage of this approach is that input boundedness absolutely adjusted by

selecting several parameters. The work in [68-71] presents a technique to implement

the input constraint using a modified Lyapunov Candidate function. Because of the

actuator saturation, the Lyapunov function would be added more the quadratic term

from the difference between the control input from controller and the real signal

applied to object. The control design was obtained after considering the Lyapunov

function derivative along the system trajectory. However, these aforementioned

traditional nonlinear techniques ha\(e”sre’veral drawbacks, such as difficulties in

finding equivalent Lyapunov function, dynamic of additional terms. Optimization

— 18




Technique using GA (genetic algorithm), PSO (particle swarm opfimization) were

.. adressed_to solve the papth. planning problem [67].. The. MPC (model predictive .. __ .|

—+——————control)-solution,—which-is-the-special case—of-optimal-control-design;-has-been

algorithm obtains the control design that can tackle the input, statc constraint based . ... .

on considering the optimization problem in presence of constraint. An asymptotic
optimal control design was presented in [61] by solving directly the Riccati equation

_in linear-systems. However, it is difficult to-find-the explicit solution of Riccati ~-———-

equation as well as partial differential HIB (Hamilton-Jacobi-Bellman) equation in
general case. The approximate/adaptive dynamic programming (ADP) has been paid

much attention for optimal control problem in recent years because it is necessary to

solve not only Riccati equation for linear systems but also HIB equation for nonlinear
systems. Thanks to Kronecker product technique, authors in [75] proposed the online
solution for linear systems without the knowledge of system matrix based on the
least-squares solution from acquisition of a sufficient number of data points. In [76],
.. Long-Ping liang et al. extend the above online solution to obtain the completely

unknown dynamics by means that does not depend on cither matrix A or matrix B of

P R W RN,

linear systems. The fact that Riccati equation was considered in more detail in the
computation problem as well as data acquisition. Moreover, the exploration noise on
the time interval was mentioned in proposed algorithm [76]. Instead of the approach
of employing Kronecker product for the case of linear systems, the neural network
approximation was mentioned for cost function to implement online adaptive
algorithm on the Actor/Critic structure for continuous time nonlinear systems [77].
However, the proposed algorithm required the knowledge of input-to-state dynamics
to update the control policy as well as persistent condition was not considered [77].
The weight parameters in neural network were tuned to minimize the objective in the
least-squares sense [77]. The theoretical analysis about convergence of cost function

‘and contro! input in adaptive/approximate dynamic programming (ADP) was the

extension of the work in [78]. Thanks to the theoretical analysis about the neural

19




network approximation, authors in {79] presented the novel online ADP algorithm

. .which enables to tune. simultaneously. both_actor and. critic_neural networks. The _ ... _ __]

[ BE—

weights training problem-of critic neuralnetwork (NN)-was-implemented by modified

- convergence. It is worth noting that the persistence of excitation (PE) condition need

to be satisfied and Lyapunov stability theory was employed to analysis the
convergence problem [79]. Extension of the work in [79], based on the analysis of

-_apla_réximate-:Bel-lrhan- error, the prépose& --'-al-gdr_ithl-ﬁ- in [_!éOj enables to online - - — -

simultaneously implement without the knowledge of drift term. In [81], the identifier
along with adaptation law can be described using a Neural Network to approximate
the dynamic uncertainties of nonlinear model. An extension using special cost
function has been proposed in [82,83] to enable handling of input constraint. The
framework of ADP technique and classical sliding mode control was presented to
design the optimal control for an inverted pendulum [84]. However, ‘;he effectiveness

of ADP has been still not considered for a robot manipulator in aforementioned

AN BN

..—researches. This work proposed the.control algorithm combining exact linearization, . 7
Robust Integral of the Sign of the Error (RISE [61]) and ADP technique for

-~

manipulators in absence of holonomic constraint. This ADP technique was )
implemented using simultaneous tuning method to satisfy the weight convergence \
and stability.

2.1. Dynamic Model of a Robot Manipulator and Control Objective

Consider the following robot manipulator without constraint:
M(q)§+C(q.9)g+G(q)+F(g)+7,(t)=7 : (1)
Several appropriate assumptions {61] will be considered to develop the
control design in next chapters.
Assumption 1. The inertia matrix M{q) is symmetric, positive definite, and

- guarantees the inequality ¥V £(¢) € R"as follows: S




2
L)

m [ < & M(q)é < m(q)|¢]

where m, € R, m(g)eR,

|_-"|| 1S a known positive constant, a known

positive function, and the standard Euclidean norm, respectively.

Assumption 2. The relationship between an inertia matrix M(q) and the Coriolis

matrix C(q,q)can be represented as follows:

E M) =2C(q,g))E=0VETR" (3)
It should be noticed that this manipulator is considered in the absence of

~holonomic constraint force. The control objective is to find the control algorithm .

being the framework of exact linearization, RISE and ADP technique enabling the
position tracking control in manipulators control system (Fig. 1). ADP algorithm will

be employed to implement optimal control design as desribed in next chapter.

2.2. Adaptive Dynamic Programming Approach for a Robot Manipulator

3

~
e
“

Controller

u' [ -
| w=htrg~t X = f(x) + gLl X
——

T=M(q) i V(g da + 6@ + Flq) + 7y

Manipulator

Fig. 1. Control Structure
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2.2.1 ADP Algorithm

___In [61], by _using the control input (4) for manipulator (1) with nonlinear

* function (5) obtaining from (6),(7), (8), we lead to the nonlinear model (9): — |

U=—F+h+T 4
h=M(ee)+Clae)+Glg)+F(g) (5)
e=49,—-9 _ - ' (6)
e, =¢é +ae, (7)
S At A 7 A ¢ ) D
x=f(x)+g(x)u 9)

where

|4 fx)= —Q, Inm € d _ Onxlr
o TP %o,  —mrc)e | ™ EE| Iy |

Now, the control object is to design a control law u to guarantee not only

stabilization (9) but also minimizing the quadratic cost function with infinite horizon

as follows:

o
r(x,u)=Q(x)+u'Ru (11)
In which, Q(x) and R is positive definite function of x, symmetric definite
positive matrix, respectively.
This work presents a solution for approximate approach called adaptive
dynamic programming (ADP) for optimal control design. In [79,80], consider the

following affine system.

x=f(x)+g(x)u _ (12)
where xe yc R", uceUcCR”". f(x)and g(x) satisfy Lipschitz condition and
F(0)=0.

22
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The cost function is defined as (10). The next definition was given in [75,76]

_to show that the optimal control solution will be considered in the set of admissible

control

ent value function x)is finite. Z)is

denoted set of admissible control policy.

For any admissible policy x(x), the nonlinear Lyapunov Equation (NLE) can

~ be formulated

A (7 e s )

Defining Hamilton function and optimal cost function as follows:

H (s b,)=r(m) = (72) (7 () + £ (1)) | (1)
Vi(x)= mm [j' r(x, ,u))

We lead to the following HIB equation:
0= mmH(x,/u,V) H(x,u V) (15)

,ue‘]‘

function and H (x, u,V*) = 0 with any admissible policy is NLE.
Now, the optimal control policy can be obtained by taking the derivative of
Hamilton problem with respect to policy

SR N
y7, =—E(R‘g V) (16)

This work present Policy [teration (PI) algorithm for a robot manipulator including 2

steps as follows:
Initiate admissible control policy #°(x)

Repeat
Step 1: Policy Evaluation

Solve NLE for ¥’ (x) corresponding given control policy ¢/
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o () + (02 (£ () g () () =0 a)

Update new policy according to

1 .
‘"Z‘(R"gTV;) (18)

- Untilr=n__ or |Vr‘+l —VIIS £, o . S

Where n_ is a number of limited iteration and £ is an arbitrary given small

pos1t1ve number L Ll L il

_equation. _

ThIS algonthm is cons1dered in [79] that prove each pohcy control ) - 15 |
admissible control. The cost function V' was reduced at each step until converge to ‘
optimal policy and 4/ converge toward optimal policy as well.

However, the nonlinear Lyapunov equation (17) is hard to solve directly.

Therefore, in recent years, finding an indirectly way to solve this equation has been

concerned by many researches [78-83]. In the next steps, two neural networks called

Actor-Critic (AC) are trained simultaneously to solve approximately the HIB
The cost function and its associated policy can be represented by using a
neural network (NN) as follows
Vi=W'g(x)+e,

u = —%R" g (Vo(x) W +e,

(19)

Where, ¢(x) is corresponding function of NN that usually being selected as
polynomial, Gausses, sigmoid function and so on. V is denoted %x :

Approximated optimal cost function and optimal policy are presented:

7 =W f(x)

_ - (20)
:—%R (V) W,
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Note that, to approximate HIB solution, we need to find only term W, .

- — —However; 1o stabilize closed-160p system, both W, W are employed, which [cads to

the flexibility that can help handling the stability of system in learning process.

By replacing the optunal policy and the optlrnal cost flll’lCthIl and by Actor-

Critic networks in HIB e . i ' ]

O(x)+ & R+ WV (£ (x)+g(x)d)=¢, @n
Q@)*=”’LV¢TG-V¢WL+ WLW( '2 £R gw] L —

Where G=g'R'g.

The tuning law for I/f/ is described as follows

W=-nl—2 ¢ 23
<= l+vo'Te " =
T
r=-pr—22__r (24)
l+vel @

Ly =T (0) =@ L. Where 1" is resetting time. To avoid slow convergenceon ¢

Pf{, , the matrix I is considered with default matrix I'(0) when minimum eigenvalue

of T reach a given small positive number. a)(x):V;ﬁT( f (x)+g(x)u) and

1+vw'T'w is normalization factor.
To make sure the convergence of Pf/ with update law (24), @(x)must satisfy

the Persistence Excitation (PE) condition [79].

fo+1

mlz [ w(tyw(r) drzul (25)

for several positive numbers g, 2, T .

(1)

Jl+vo'Te

Where (1) =
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On the other hands, (22) is nonlinear equation of Pffa Therefore, the tuning law

o _'frdr_lfﬁ;ﬁﬁfdfﬁlfé'te_d_ﬁéée_dﬁﬁ GD algorithm to minimize 'fh_e_co_st"('é;,;(f))

v]"‘r ]' L wr B o' TA T;"f 5 T
W = prof =T e —— vgpuvgﬁr{ V= \;am =7 W;\;]r (26)
{ Vitow ‘ ¢ 7]

Where proj{+} is a projection operator [22] that ensure the boundedness of

updatation [aw.

Note that, these parameters of both two NN’s update law 7., 77,,, 77,, must be

can also find the complete proof of convergence of parameters and stability of system
in [80].

2.2.2 RISE Feedback Control Design
In [3], the control term p(t) is designed based on the RISE framework as follows:
p(t) = (k, + e, (1) — (k, + De, (0) + v(?) 27)
Where v(t) e R" is described as:

C o=k ¥ Do, FBsgn(eyy T T T e e e (2
k eR is positive constant control gain, and S, € R can be selected being a

positive control gain selected according to the following sufficient condition

5, >C.+LCQ (29)
(04

Remark 1: It is different from the work in [3], in our work the ADP algorithm
is presented to find the intermediate optimal control input in the absence of dynamic
uncertainty. Furthermore, ADP technique was considered in [78-84] was still not to
apply for a robotic manipulator.

Remark 2: In compare with the work of Dixon [61] that design optimal control
solving Riccati equation, this work requires partial knowledge of manipulator’s

dynamic including matrices M, C. However, using the ADP approach, the optimal

26
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control problem is addressed in general case for any given cost function as (10)

__ without constraint,

2.3. Offline Simulation ] Results

--%@H&d@%ﬂ%@%&sm&&&mmm%%em%ﬁe&wmg—j

The general dynamic of two-link manipulator is represented by (1) with

M= 5 + 2cos(g,) 1+ cos(q)
el {ices@) T e

C = _42 Sin(Qz) —(é, + q"z)Sin(qz)
g,sin(q,) . 0

G=98 1.2cos(q1) + cos(q, + qz)ﬁ
cos(q] +q1)

0.1sin (t)_

O.lcos(t)J '

F= —O.ISign(q) , T, = {

~ i

__Value function is (10) with the term: Q(x)=x'Qx.

_ Qn le _ 40 2
Qo _|:Q2I Q22j|’ QII _I: 2 40]’
44 [4 0
le_Q21 - 4 -6 ’ sz_ 0 4 ’
1025 0 _|15.6 106
"o o025 %106 104

Without loss of generality, the set-point is selected as ¢, =[0 0] , initial state

e N

\

is ¢, =[0.1598 0.2257] .

The optimal value function which is solved directly in [61] is

* T _QIZ Onxu 2 2
V' =x x=2x —4x; +3xx,
0 M

Hxn

+2.5x% + x; cos(x, )+ x] + x,x, +0.5x,x, cos(x,)
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The updatation law of Vf/ and W are represented in (23) and (26) with

=800, v=LT({0)=100,¢,=0.001, n, =001, 7, =1. |

NN activation function is selected as

=[x & xx, x xeos(x,) x xx, xxcos(x)].

The optimal parameter W =[2 -4 3 2.5 1 1 1 0.5] that is obtained

by solving directly HIB equation in [3]. Fig (1) and (2) show the convergence of PTﬂ/'

~ . -, W-The value of . after-110s-is [2- —4—-3 2.5 1-1-1-0.5].To satisfy PE -~ - - .-

condition as in (25), a probing signal is added in system input. Moreover, system’s

error evolution is shown in Fig (3) determining the stability of control system.

[~—- Critic parameters |
— ——4 _..G
(
. “
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Fig 2. Convergence of Critic’s parameters
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CHAPTER 3

T TTADAPTIVE T DYNAMIC — PROGRAMMING ~ ALGORITHM FOR

UNCERTAIN NONLINEAR SWITCHED SYSTEMS

It is worth noting that many systems in industry can be described by switched system

such as DC/DC converter [85-86], I-bridge inverter [87], multilevel inverter [88],

nhoatearalto o tarnat A FOOT A 14l I e o) 1 F LI | 1 4
pheteveltate inverter {891-Althoughmany differentapproaches for switched systens

have been proposed, e.g., switching-delay tolerant control [90,91], classical nonlinear

- —-control [92-96];the optimization approaches with-the advantage of mentioning the -~

input/state constraint has not been mentioned much. The approaches of fuzzy and
neural network as well as ANN, particle swarm optimization (PSO) technique were
investigated in several different systems such as photovoltaic inverter, transmission
line,... [97-101]. Adaptive dynamic programming has been considered in many
situations, such as nonlinear continuous time systems [102], actuator saturation [103],
linear systems [104-106], output constraint [107]. In the case of nonlinear systems,
the algorithm should be implemented based on Neural Networks (NNs). However,

Kronecker product was employed in linear systems. Furthermore, the data driven

technique should to be mentioned to compute the actor/critic precisely. It should be
noted that the robotic systems has been controlled by ADP algorithm [108-109]. Our
work proposed the solution of adaptive dynamic programming in nonlinear perturbed
switching systems based on the neural networks. The consideration of the Halminton
function enables us obtaining the learning technique of these neural networks. The
UUB stability of closed system is analyzed and simulation results illustrate the high

performance of the given controller.

3.1. Problem Statement
Consider the following uncertain continuous time nonlinear switched systems of the

form:

izﬁ(x)+g,(x)(u+é(x,r)) (1

30 B _
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Where x(r)eQ_eR" denotes the vector of state variables, u(¢)eQ, e R”is the

== ~———vector-of-control-inputs—Fhe—function o 00} = Q={1, 2=/} is = sigmal of -

switching processing, which is a piecewise continuous function with respect to time,

- and 7 is the subsystems number £, (x)are unknown smooth vector functions with

~ £(0)=0. g(x) are known smooth vector functions such that G, <|g, (x)|<G,..

The switching index o (¢)is unknown.

Assumption 1: A(x,f) is bounded by a known function p(x)as |A(x.7)|<p(x)

Consider the performance index for the uncerfain switched system (1):

J(x(t),u(t))=Ir(x(r),u(r))dr 2)

Where r(x(z),u(r))=x"Ox+u Ruand Q=0 >0;R=R" >0

The control objective is to design the state feedback controller and give the upper

bound function to guarantee that the closed systems under this controller is robustly

stable. Additionally, the performance index (2) is bounded as J (x,u) < K (x,u) <M

_Definition: The function K(u) can_be known_as the guaranteed cost function.

|
[

A MAy e Y

Therefore, the control law u" with « = argmri!nK (x,u) is known as the optimal

Hell,

guaranteed cost control law.

3.2. Control Design
The obtained nominal system after eliminating the disturbance in the system (3) is

described by:
x=f{x)+g (x)u (3)
The performance index of system (3) is defined as:

5, (%(0)u()) = ]| F(x(e)u(2))+ 2 p(x)) e @

We prove that J (x(r),u(t)) with A>|R|is the one of guaranteed cost function of

sjstem (1 )7Deﬂne v (t): n}};n J, (x(t) U (?)) , we have: N
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v (6) =i [ (()u(2)) + A () e )

()= min T [r(s(e)e)) Al () o

oy
)l
N

[ ale) o

TI+AL

Consider the Halminton function obtaining the nominal system and performance: - -

H(x, uV')= r(x(t),u(t)) + 40" (x)+(VV )T (]f(x) +g (x)u) (N

.. _Weconsiderthat: o __.

H(xu' V' )=minH (xuV")=0 (8)
of (x,u,V’ .1 .
T) =0=u"=-—R (g.(x)) vV 9)

=1

We continue to utilize this control law (9) for nonlinear switched system (1) and

obtain the following result:

- Theorem — 1:- --The—systemr- (1) -under --the- state~ feedbaeck--controt—law—— —--—

u(x):—%R" (g, (x))TVV is stable with the associated Lyapunov function

candidate: V(z)=j[r(x(r),u(r))+,1(p(x))2]drwhere 2>|R|
Proof: The derivative of V is given by the following formula:
P(0)=(VP) (£(x)+ & (x)(u+A(xr)))

By using u(x) = —%R"' (g, (x)) vV

we infer:

V(e)=-r (x(t) ,u(t)) —Ap(x)+ (g}. (x))r VV'A(x,t)

| ’ (10)
=—x'Ox —u'Ru— Ap* (x) - 2u' RA(x,1)

=0 A () (A ) JR(w A )+ AGer) RA(m) (1)
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=—x'0r - (20 (%) - A(x,t) RA(%0)) - (u+ A(x,0)) R(u+ A(x,1)) (12)

From assumption Tand A>|[R]

we have:

V(H)<-x"0x (13)

Therefore, the system (1) is_robustly stable. It is impossible to solve the analytic

sofution of HIB nonlinear equation (13). [ence, the optimal performance for system

(3) can be described based on a neural network as follows:

Vi=w'o(x)+e(x) (14)

Where o(x):R"— R";c(0)=0 is the vector of NN activation function, N is the
number of neurons in the hidden layer, and &(x) is the NN approximation error,
weR" is the NN constant weight vector. O'(x) can be selected such that when

N — o, we have: £(x)— 0 and Ve(x)— 0, so for the fixed N, we can assume

Assumption 2:

le@)<ens]v

“<V£ Vo <”V0' "<VJ |<w,,.

Combining two formulas (13) and (14) we infer:
H(x,u*,V*): r(x(z‘),u* (l‘))+lp2 (x)+(VV*)T(fr_(x)+g,. (x)u) =0 (15)
=x' O+ Ap* (x) + (V1) f,(x)-%(v V'Y g (x)R"g,(x) (VV')=0 (16)

vy’ :(Vcr(x))’rw+ Ve(x) (17)

Obtain the NN based HIB equation as follows:

v =X Qx+ﬁp ( ) )
(18
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eyy = X' Ox+ Ap (x)+ W' Vo (x) f(x)

‘ T (19)
_ — oty (e () Vo ) v
The residual error formed by the function approximation error:
TR
(20)

+Ave(x) () K5, () V()

It follows that e,, converges uniformly to zero as N — . For each number N,e,,

. Tis bounded on a region as” ¢,Xe,, . Under the structure 6f ADP-based optimal ___ _

ey =X O AP (X)W Ve (X) ()

controllet, a critic neural network is given the following estimated weight vector W:

= Wo(x)=o(x) isit=-1 1 (5,(x)) V7 @n
The approximate error of the critic part:
e = (3(2),2(8)) + 20" () + (Vo (x) #) (£, (x)+ & (x)2) 22)

1. 7 -l T T oA (23)
g Vo(x)g, (x)R'g,(x) Vo(x) w

The weight vector is trained based on a steepest descent method:
4 - (24)
dt ow

with £ = %e;meﬁ_ .

Remark 1: The weight w is trained to minimize the network error part

1,
E= Ee:ilffehiffl'

The fact is that:
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p=OE OE O _ 6E(d ]=—a(£) 25)
o o oot ow\dt ow,

Theorem 2: Consider the feedback controller in (21) and the weight vector of the

- ———eritic-part is updated by (25),-the weight estimate error i =w—wand the closed-loop

system’s state vector x(¢) are uniform ultimate bounded.

Proof; Define: w=w—Ww = W = —w Consider the Lyapunov function:

— Q=K+, () D

where 14 (t) =

For deriving the term V (¢}, we obtain that:

;,;V.(r)=lw(r)"[iw(r)j
Loy (La()|- ey Z

e KzﬁfeHmV—eer—}(—f(x—}+ g}(x)ﬁ} e e

From (14), (25) we have:

1

- LR (g () (Vo (o) - (Vo) w-ve(x)
LR (8 () (Vo) 5 ve()
Furthermore, we have:

Vo), (x)+ £ (1)) =Vo()(£(x)+ & () )+ Vo (x)g (3)(i-u)
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Vo (x)(f(x)+g, (x)d)

— -
=Vof x\f 1 ) (29)

: IL+ég,. (x)R'g,(x) (Vcr(x)l W+ Va(x))

we obtain:

pHJB — pmw

= Vo (x)f (x)+ %WTVO'(x) g.(x)Rg, (x) Vo (x) w @7)

T O P Y P o S —

Because

1

u' = —-2-R" (g (x))r ((Vcr(x))r w+ Vg(x)) ,

we have:

€m — Cww =

Ve[ FVe (e (v R (V)| ey

~1/4W'Vo(x)g (x)R"g,(x) Vo(x)
Assumption 3: Hf(x) +g (x)u'”\{y

max

Define;
#= () + 8. ()36 = 8 (¥)R '8, (x) ;Yo =Vo (x); Ve = V()

we obtain:

~y 1 _;
—e,, +WVou+—-w'VoGVe

—w' . 2 Vcr(x)[,u,. +%G,.(VO'T\7U+ Va)]

(29)

T e TN

+—WVoGVo'w
- U 4 T J
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Define:

A=W VoGV B = (W Vau )+ i( WYoGVe) +—;-ew;
4 by rd A rd v

1
- C=w'Vou, rD;p7,7§,(7 wV g'GVg\ _ I

It is obvious that:

40

o —;Az _BA-C'-DC —-——(A +4B) + 2B _fc T 271_;7_“7 B ——
[] \ 4
1 ) N
<-gl(4+4B) (165" +2D7)]
We have:
A+4B3
I (G A (R) (V0. | o1
—||w||(3Va o ¥ Vo, (G )2 A, (R" )Vem ) —2e
Ca ] ]

168" +2D°<([#](3V 0, 4, + V0., (G

max

)2 A (R" )Va‘m ) +2e )
| : (32)
+z( —||w||Vo' Vo (G.) A (R")ng]

According to (29) and (30) the inequality
(4+4B) —(16B* +2D° )27,

with 7, >0 leads to other inequalities which having the polynomial quadratic form

with the variable ||17v|| and the highest order coefficient

PRl W\
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so we can find the positive number J such that: V||| > &

we have (4+4B) — (168" +2D% )21,

T weoblain: ¥, () K—#,. ]

For the term V,(¢), from (00) we have:

V,=(VV') (£ +g (i +4))
1,

I 3 ¢ 22 (%)= Z(—V'V ‘T)‘T’.g;??‘g:‘i('_v_—r?‘ Y ¢} DU

+%(VV' ) g R'e (Va(x)T W+ v.s(x)) +(vr') ga
Assume that p(x)=@ x| From (30) we have:
V<A (Q)+ 20 o] +6° (34)
With
= ____%V_Vf)"ﬁ.g’_ RAGH(TF ) -
(V) g kg (Vo (x) #+Ve(x))
+(VI) gA

Based on the two above assumptions, we have:

<0, V0 +VLY ()

+(w, Vo, +Ve, ) g

It is obvious that (ﬂmm (0)+ /’Lzr,r)”x”2 —-@>2x, with 7z, >0 also leads to other

“inequalities which having the polynomial quadratic form with the variable Hx” and

i
~s Ay
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the highest order coefficient (/lmin (0)+ /1@') > 0so we can find the positive number

& such that; v iixii > 9, we have (/f.min Q)+ Azzr)”x" —-8°>r,, we obtain:

Vz(t)g_ﬂz

Remark 2: The numbers ;8 can be changed by renovating the neural network of

{0}
theoptimat performance index. Moreover, for any switching mdex, after — 2

min (7,;7,)

- thje__\_/a_rlable ||x|| and._ ||w”__always are in -the-specified-domains. The ADP controllaw— ———-——

7 18 proposed in (21) which tends to the neighborhood of the optimal controller #".

Proof: From (34) we have:

NR ))T((Va(x))"wwe(x))

A (R")G  (Vo,. 0+Ve, )=

max " | 3

1
2

<

Thus the proof is completed.

3.3, Slmulatlon Results

In this section, we verify the effectiveness and performance of the proposed

controller:

Let N =2 and the subsystems of the switched system are :

{J&, =-x —2x,+ (u +A, (x, 1‘))

5
X, =X, +0.5cos(xf)sin(xj)—(u+&, (x,t)) )

%, ==xsin(x,)+(u+A, (x,1))
X, = éx, —cos(x, Jeos(x; ) - (u+ A, (x,1))

(36)

The 1n1t1al state Veetors can be chosen x( 0) = [S —S]T

W

?

Lo N

F/acyd




20 1 0
Choosing that the parameter matrices: R = [0 _‘;Q = [0 3—‘;0,' =0.A=5

The simulation results shown in Fig.3.1, Fig.3.2 validate the effectiveness of

-~ -proposed algorithm: - — - — — S ——

5 .
4
) PO R B
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1
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-1 1 : 2 7 .
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time
Figure 3.1. The response of xi 2
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-5 — . TR SN
0 50 40 60 80 100
time
- Figure3.2. The response of x2
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CONCLUSION AND DEVELOPMENT DIRECTION OF THE PROJECT

1. Conclusion

— This Project mentioned the problem of optimal control design for a manipulatorin

combination with RISE and exact linearization. With the ADP fechnique, the solufion of

HIB equation was found by iteration algorithm to obtain the controller satisfying not only

the convergence of weight but also the position tracking. Offline simulations were

implemented to validate the performance and effectiveness of the optimal control for

We consider previously for nominal systems by eliminating the disturbance, then
using classical nonlinear control technique. The neural networks have been designed to
apprbximate the actor and critic part of iterative algorithm. It is possible to develop the
learning algorithm with simultaneous tuning. Finally, UUB stability problem of the closed-

loop system are guaranteed under this solution.

2. Development Direction of the Project
. The research on ADP scheme, as a newly emerging approximate optimal algorithm, isjust

a beginning. The following part is a brief introduction about the research focus and

& 50 \O1

shortcomings of the existing ADP, by which we hope to show the development tendency

l

about ADP scheme for readers.

H

1) The proposal of new-type ADP algorithms. At present, ADP scheme is still in the
developing stage. Each existing algorithm has its shortcoming. So the new algorithm
should be proposed aiming at these shortcomings.

2) The research of ADP scheme in finite time. In the practical application, one usually
needs the system to achieve a certain performance index in finite time. So the issue of
exploring the optimal control problem in finite time is still a difficult problem.

3) Output feedback of ADP scheme. Until now, most results of ADP scheme focus on the
state feedback aspect, whereas the results based on output feedback are limited and still in

the infancy period.

41




4) Improvement of online adaptive algorithm. An iter ation algorithm requires a longer

offline calculation time. Once the system changes, we need offline calculation again

. , Through designing update rate of weights, the onli i ' : . : _

~ aninevitable trend for ADP scheme. ADP scheme : : : : |

5) control of large scale time delay uncertain systems (even varying time delay uncertain

nnnnn

system control. The ADP-based optimal control of infinite dimensional systems needs to

-—-——be-furtherresearched—— -——— ———— - — : s \ e
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-

S MECTIRUDETAL — - - -

ciia nhém nghién ctru thong qua céc bai béo qudc té duge phit trién tir & tai.

Pé vuot qua duge mién hép dén nay cc nhém thudt toan diu Kiidn duge dé guatphai-thda--
min duge ngayén 1y tich ddng thdi dir béo duge mien hip dén ciia hé Robotic, Mot trong nhitng
huéng di tim néing dugc dé Xut 1a b) didu khién hai thanh phﬁn trong 46 mgt thanh phén cd téc
dyng thu hién quf dao chuyén dong trung thm va thanh phan con lai dam béo dbi pho dwgc voi sy
hia loan tai mién hip din. Myc dich chn phai dat dugo 4 pbéi xd Iy dugc sy sai khéc vé trang
théi cha hé thong thue va hé théng danh nghia. Cc tac gia tip trung cy thé hoa nhiing nghién ciu

12. DOI TUQNG, PHAM VI NGHIEN CUU

12.1. Déi tugng nghién cirm: Didu khién h§ Robotic co danh gi4 dén mién hap dan.
| 12.2. Pham vi nghién clru : Xuét phat tir cach tiép can kinh didn, dAu tién, md hinh toan hoc cvia hé

thdng s& dugc thiét 1@}5 keém theo nhimg yéu i ditu kb varcac rang bude-ci thé. Duyatriinca s | _ .
16 hinth todn hoc va muc tiéu diéu khién, bd didu khién pht hop vi 461 tuong s& duge xdy dyng va
tinh n dinh cta hé kin duge chitng minh mdt céc chi tié(, Tiép theo, qua trinh md phong hé kin
duge tién hanh di kém theo nhimg dénh gié dinh tinh va dinh lugng vé& dong hoc hé théng.

7

13. CACH TIEP CAN, PHUONG PHAP NGHIEN CUU
13.1. Céch tiép can: nghién ciru Iy thuyét va thie nghiém.

khoa hoc trong va ngodi nudc, frao ddi che ¥ trdng va két qua nghicn ciru

13.2. Phuong phép nghién ctru: Nghién ciru trong tai lidu (tlr cdc sach, bai béo, tap chi khoa hoc...).
Thira ké, tham kho céc két qua nghién ctru ghn va c6 lién quan. Tham gia cac dién dan, hoi thao

trong vA ngodi nude. Thir nghiém trén mo hinh hod bing may tinh va trén thiét bi thue té.

vdi cac nha khoa hoc

14, NOI DUNG NGHIEN CUU VA TIEN DO THU'C HIEN
14,1, N§i dung nghién clru:

- M# hinh hoa déi tuong diéu khién, dé <t cac thuat toan didu khién cho ddi tuong diéu
khién. Mo phong Kiém chimg két qua. Xay dyng béo cho tdng két, viét bdo c4o khoa hoc, viét bao.

- Béo céo cac bai bao bing tiéng Anh (13 san phém coa dé tal sau khi duge chép nhan ding)
) tai hdi thao don vi

14.2. Tién 43 thyc hién T

STT Cac ndi dung, cong viée San phim Thoi gian
thyc hién (bt dau-két thic)

Ngudi thye hign

"1 [ Xay dung thuydi minh dé tai | Bao cao 7/2019

Tran Thi H& Yén
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voi dido kién ly tudng
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M3 phong hé trong digu kifn
Iy twémg : Céu tric didu khidn
nhiéu mach véng trong cho hé

ainl t!‘e

WA

o-v&i didu kidn 1y teéme

Béo céo

08/2019-10/2019

Lam Hung Son
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Mé phong h¢ trong dieu kign
¢6 nhi¢u ngoai lwe vi nhidu do:

Béocan

(08/2019-10/2019

Nguyén Hong

Quang

- Chutric-di¢w khidn mach vong:
trong cho h¢ Tracking Trailer

véi didu kign co ngoai lyc va

_ﬁ.i An
e do

18 | M6 phéng h trong dicu kién

c6 nhién ngoai lyc vi nhiku do;

Chutric didukhiénmach vong | - - -

08/2019-10/2019

Duong Hoa An

- ,hzztlsao,cao,béi,,bao,,,,,, _

trong cho h& xe tw hanh véi ditu
kién c6 ngoai lvc va nhidu do

19 | Md phng hé trong dicu kifn
¢6 nhign ngoai lyc va nhita do:
Céu troc didu khién mach vong
trong cho hé céu treo véi didu

kign c ngoai hre va nhiéu do

Béo cao

08/2019-10/2019

Vil Xuan Tung
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Tran Thi Thanh
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21 | M8 phong hé trong dicu kign
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Chu trac diéu khién nhidu mach
vong trong cho hé xe tur hanh v6i
didu kién c6 ngoai lye va nhifu
do

Béo cdo

08/2019-10/2019

Duong Quynh Nga

27 | M@ phéng hé trong diéu kién
¢6 nhidu ngoai hre va nhiéu do:
Céu tric diéu khién hai mach
vong trong cho hé cu treo voi
didu kién co ngoai lyc va nhibu
do
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08/2019-10/2019

Nguyén Vin
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17.1. péi véi linh vye gido dyc va dao tao

17.2. Dbi véi linh vuc khoa hoe va cong nghé c6 lién quan

7.3, Dbi voi phat trién kinh té-x8 hoi

17.4, Dbi véi t& chirc chi tri va céc co s& img dyng két qué nghién cii
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1. INTRODUCTION

In recent years, the control methodology for robotic systems has been widely developed not only in
practical applications [1, 2], but also in theoretical analysis [3-6]. The main challenges of the control design
have been considered, such as robust adaptive control problem, motion/force control, input saturation and full
state constraints [7, 8] and the path planning problem [9]. Several control techniques have been employed for
manipulators to tackle the issue of input saturation by adding more terms into the designed control input
considering the absence of input Constraint [4, 5, 10-13]. In [4], authors proposed a new reference of control
system due to the input saturation. The additional term world be computed based on the derivative of
previous Lyapunov candidate function along the state trajectory under the control input saturation [4].

Furthermore, authors in [5] give a new approach to address the input constraints as well as
combining with handling the disturbances. The proposed sliding surface was employed the Sat function of
joint variables. In order to realize the disadvantage of state constraints in manipulator, the authors in [7, 8]
proposed the framework of Barrier Lyapunov function and Moore-Penrose inverse, Fuzzy-Neural Network
technique. The equivalent sliding mode control algorithm was designed then the boundedness of control
input was estimated. The advantage of this approach is that input boundedness absolutely adjusted by
selecting several parameters.

The work in [10-13] presents a technique to implement the input constraint using a modified
Lyapunov Candidate function. Because of the actuator saturation, the Lyapunov function would be added

. _more the quadratic term_from the difference between the control input from controller and the real signal

applied to object, The control design was obtained after considering the Lyapunov function derivative along

Journal homepage: htip.//jjpeds.iaescore.com
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the system trajectory. However, these aforementioned traditional nonlinear techniques have several
drawbacks, such as difficulties in finding equivalent Lyapunov function, dynamic of additional terms

[7, 8, 10-13]. Optimization Technique using GA (genetic algorithm), PSO {particle swarm optimizatiom)

were_adressed to solve the papth planning problem [9]. The MPC (model predictive control} solution,

which is the special case of optimal control design, has been investigated for linear motor not only online
min-max technique in [14, 15] but also offline algorithm in [16]. In order to consider for robot manipulators.

- Optimal-control -algorithm-obtains- the-control design that can tackle the input, state constraint based on

. considering the optimization problem in presence of constraint. An asymptotic optimal control design was

presented in [3] by solving directly the Riccati equation in linear systems. However, it is difficult to find the
_explicit solution of Riccati equation as well as partial differential HIB (Hamilton-Jacobi-Bellman) equation

in gencral case. The approximate/adaptive dynamic programtiiing (ADP) has been paid much attention for

opfimal confrol ptoblem In Tecen
systems but also HIB equation for nonlinear systems. Thanks to Kronecker product technique, authors in [17]
proposed the online sofution for linear systems without the knowledge of system matrix based on the least-
squares solution ftom acquisition of a sufficient number of data points. In [18], Zong-Ping Jiang et al.

- ~exfend The above onlifie solution to obtaim the tompletely-unknown-dynamics-by-means-that-dees-net-depend

T oneither matrix Aor maltix B of |inear systems. Thie fact that Riccatiequation was considered-in-more detail————--— -

in the computation problem as well as data acquisition. Moreover, the exploration noise on the time interval
was mentioned in proposed algorithm [18]. Instead of the approach of employing Kronecker product for the
case of linear systems, the neural network approximation was mentioned for cost function to implement
online adaptive algorithm on the Actor/Critic structure for continuous time nonlinear systems [19].

However, the proposed algorithm required the knowledge of input-to-state dynamics to update the
control policy as well as persistent condition was not considered [19]. The weight parameters in neural
network were tuned to minimize the objective in the least-squares sense [19]. The theoretical analysis about
convergence of cost function and control input in adaptive/approximate dynamic programming (ADP) was
the extension of the work in [20]. Thanks to the theoretical analysis about the neural network approximation,
authors in [21] presented the novel online ADP algorithm which enables to tune simultaneously both actor
and critic neural networks. The weights training problem of critic neural network (NN) was implemented by
modified Levenberg-Marquardt algorithm to minimize the square residual error. Moreovet, the tuning of
weights in actor and critic NN depend on each other to obtain the weights convergence. It is worth noting that
the persistence of excitation (PE) condition need to be satisfied and Lyapunov stability theory was employed
to analysis the convergence problem [21]. Extension of the work in [21], based on the analysis of
approximate Bellman.error, the_proposed. algarithm. in_[22] enables to ontine simultaneously implement
without the knowledge of drift term. In [23], the identifier along with adaptation law can be described using a
Neural Network fo approximate the dynamic uncertainties of nonlinear model. An extension using special
cost function has been proposed in [24, 25] to enable handling of input constraint. The framework of ADP
technique and classical sliding mode conirol was presented to design the optimal contro! for an inverted
pendulum [26]. However, the effectiveness of ADP has been still not considered for a robot manipulator in
aforementioned researches. This work proposed the control algorithm combining exact linearization, Robust
Integral of the Sign of the Error (RISE [3]) and ADP technique for manipulators in absence of holonomic
constraint. This ADP technique was implemented using simultaneous tuning method to satisfy the weight

convergence and stability.

2. DYNAMIC MODEL OF A ROBOT MANIPULATOR AND CONTROL OBJECTIVE
Consider the following robot manipulator without constraint:

M(q)§ +C(g.9)g+G(q)+F(g)+7,() =7 )

Several appropriate assumptions [3] will be considered to develop the control design in next
chapters.

Assumption 1. The inertia matrix M(q) is symmetric, positive definite, and guarantees the

n
inequality Ve eR as follows:
2 _ 2
m|EF <& Mg <m(g)E] @
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where ™ ER, mi(q) R, “ ' “ is a known positive constant, a known positive function, and the

B —standard Euclideanmorm; respectively:

Assumption 2. The relationship_between an inertia matrix M(q) and the Coriolis matrix c(g:9) can

be represented as follows:

EMg)-20gE=0 VEeR, — ¢ )

it should be noticed that this manipulator is considered in the absence of holonomic constraint force.
' The contro] ob_jectwe is to ﬁTrd the comrol algorlthm bemg the framework of exact Imearlzatmn, RISE and

|

l
[ l ‘ i
WEhErg - xe!u)man %_—

‘
R ol )+ S }

Centroller
——

Mnnlpulalor '

Figure 1. Control structure

3.  ADAPTIVE DYNAMIC PROGRAMMING APPROACH FOR A ROBOT MANIPULATOR

3.1. ADP algorlthm
" In [3], by using thé controT iiput (37 for manfputator1) with-nonlinear funetion {5)-ebtatning-from
(6)-(8), we lead to the nonlinear model (9):

u=-T+h+7, ()
h =M(a|é,)+C(a,el)+G(q)+F(4) )
4= 4amd (©)
e, =& +aeg %
r=é, T+ 0he, (8)
x=f(x)+gxu (9)

Inxu e’l _ Omcu
Lz T, —m-c e,] EI=| Ly
L] and

Now, the control object is to design a control law u to guarantee not only stabilization (9} but also
minimizing the quadratic cost function with infinite horizon as follows:

where

Vix,) = J (x,u)al
[} (10)

r(x,u):Q(x)furTRu ” (1)




1126 O [SSN: 2088-8694

In which, o) and R is positive definite function of ¥, symmetric definite positive
—matrix;respectively-
This work presents a solution for approximate approach called adaptive dynamic programming

{ADP) for optimal control design, In[21,22]; consider the- following-affine-system:

_x=fle)tglew L . . (12)

where *€XE R' ueUcR" J(x)gg ) satisfy Lipschitz condition and /(®=0

The cost function is def' ned as (10) The next definition was given in [17, 18] to show that the -
cpswmmmmmmmmmimﬂbie control,

Definition 1: A control pollcy H(x) is defined as admissible policy if H(x )stablllze system (12) and

,u
the equivalent value function Vi) is finite. ‘F(x) is denoted set of admissible control policy.

“For any admissible policy # (“ , the nonlinear Lyapunov Equation (NLE) can be formulated

(x, (%)) + (a%x) g(x)u(x))=0

(13)
Defining Hamilton function and optimal cost function as follows:
,.
H(x )= () +(72) (£ (x)+&(x)8) "
V'(x)= ﬂgg(g)u r(x, m]
We lead to the following HIB equation:
0= min H(x, sV, )= Hx 1 ¥))
ueP(y)

(15)

It can be noticed that, ¥ is optimal policy corresponding with the optimal cost function and

Heom V) =0 with any admissible policy is NLE.
Now, the optimal control policy can be obtained by taking the derivative of Hamilton problem with

respect to pohcy

e
- Yrgy
% 2( gV )

This work present Policy Iteration (P1) algorithm for a robot manipulator including 2 steps
as follows:

i
Initiate admissible control policy H (x),

Repeat
Step 1: Policy Evaluation

Solve NLE for Vi(x) corresponding given control policy H

r(pd (3))+ () (£(x)+ ()4 (x)) =0 (17

Step 2: Policy improvement
Update new policy according to,
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i+l 1 -1_Tyri
=——(R'g'V]
7( £'%:) (18)
IV1+J _Vfis g,

Until #= e or

o~

Where " js a number of limited iteration and “* is an arbitrary given small positive number.

”””” 7—Thrs—algomhm—ls—ctms1dcrﬁ—m—ﬁl‘]—fhﬁt—m%eﬂeh—Pghgy control & _is sdmissible_control

~ The cost function 4 was reduced at each step until converge to optimal policy and H converge toward
optimal policy as well. ' '

owever, the nonlinear Lyapunov i ; = ;

finding an indirectly way to solve this equation has been concerned by many researches [20-25]. In the next

steps, two neural networks called Actor-Critic (AC) are trained simultaneously to solve approximately the

_ HJB equation,

TTTTTT T The cost fanction anid Tits associated policy” -cam berepresented—by-using-a—neural-netwerk-(NN)
R Z_asfollows, —— — — " & e o

V' =WTgx)te,

u = _lR"gT (Vo)) W +e,
2 (19)

Where, #(x) is corresponding function of NN that usually being selected as polynomial, Gausses,

%
sigmoid function and so on. V is denoted 7 0% .
Approximated optimal cost function and optimal policy are presented:

V=W 4(x)
ﬁz‘%’“"g’(%(x))r%
o (20}

-

Note that, to approximate HIB solution, we need to find only term Wf. However, to stabilize

closed-loop system, both W,,, . are employed, which leads to the flexibility that can help handling the

stability of system in learning process.
By replacing the optimal policy and the optimal cost function and by Actor-Critic networks in HIB

(17), HIB error can be obtained,

O(x)+ 4" Ra+WTIH(f (x)+g(x)i) =&, @
1. . s 1 .
)+ WV GV, +WfW(f (X)—EgR'gT V¢5W..) = Eip
(22)
_ I p-l
Where G=g R &,
The tuning law for W, is described as follows,
L w
W =l ————
T T (23)
,
—_q‘_r_%_?—'r
l+val @ (24)
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A

+y _ +
I, =T = (0"[. Where ' is resetting time. To avoid slow convergence on W, , the matrix ['is

considered with default matrix 1Y) when minimum eigenvaiue of I' reach a given small positive number.

T i FEELY ALY Y
ox}=Ve L Jx)TEFIH) and 1400 T is normalization factor.

A

17,74 ol x)  m e o
~ To_make sure the convergence of '~ with update law (24), - must satisfy the Persistence

Excitation (PE) condition [21].

,Lh+T

k= I w(ek(r) drzml

for several positive numbers 41, %2, T
—-e0(t)

NFo' Ta

On the other hands, (22) is nonlinear equation of Wﬂ. Therefore, the tuning law for w, is

(Eryib (v ))2 '

formulated based on GD algorithm to minimize the cost

A , 1 i _W v, —W
W. = proj {_ml m\wﬁ(} v (W:, —Wp)gws ~ a2 (Wa - Wf)} (26)

Where 77 * isa projection operator [22] that ensure the boundedness of updatation law.

Note that, these parameters of both two NN’s update law M, fa, ur must be selected to satisfy
some conditions [22] to ensure stability of closed-loop system. One can also find the complete proof of
convergence of parameters and stability of system in [22].

3.2; RISEfeedback-controldesign—. - ... . .. S e e -
In [3], the control term p(t) is designed based on the RISE framework as follows:

() = (, + De () —(k, + ey (0) + 1) 27

Where v eR’ is described as:

o= (k, +D)a,e, + fisgnie;) (28)

k eR is positive constant control gain, and BeR can be selected being a positive control gain
selected according to the following sufficient condition,

B> C o+,
@, (29)

Remark 1 It is different from the work in [3], in our work the ADP algorithm is presented to find
the intermediate optimal control input in the absence of dynamic uncertainty. Furthermore, ADP technique
was considered in [20-26] was still not to apply for a robotic manipulator.

Remark 2: In compare with the work of Dixon [3] that design optimal control solving Riccati

equation, this work requires partial knowledge of manipulator’s dynamic including matrices M, C
However, using the ADP apptoach, the optimal control problem is addressed in general case for any given
cost function as {10) without constraint.
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4. OFFLINE SIMULATION RESULTS
Consider the offline simulation of a two-link manipulator control system using ADP technique and

RISE algorithm.

The general dynamic of two-link manipulator is represented by (1) with

’ m Mz——térr-i-—zeos(—_qir)rr 1+ cos(g)} - -[~gysinlgy)- - (g +§,)sin(g;)]- I
I e josi o
[1.2¢0s(g, }+cos(g, + 0.1sin(¢
; G=08 1.2¢0s(g, )+ cos(g, qz)-’ r; =[ ( )-‘ .
| cos{g, +4,) F=-0 |sign(g) 1 0.1cos(¢)

-
] .

.
Value function is (10) with the term: O(x)=x Q"x.

e e e ral _O|3-|_ J—

40~ 27 e 4 o f40] — - [025 0~

Qo=|_Q2| szJl Qu:lz 40J, Q|z=Qz|:l4 _6J’ Qn=|_0 4J‘ N-—:I—O O.ZSJ,
[156 106
a_[IO.G 10.4]

ta
Without loss of generality, the set-point is selected as 9. =[0 0] , initial state is
g, =[0.1598 0.2257]

The optimal value function which is solved directly in [3] is

* 3 0 2
V=x [OQIz ;’"]x =2x1 —4x) +3x,x, +2.5x] +x! cos(x2)+x; +xy%, +0.5x;,x, cos(xz)

The updatation Taw of "¢ and 7 are represerited in (23) and (26) with,”
1, =800, v=1, T(0)=100, £ =0.001, 5, =001, 7,, =1

NN activation function is selected as,

.2 .2 2 2 2 v
dxy=|x x xx x5 xcos(x,) X, XX, XX, CO5(Xx,)

The optimal parameter W=[2 ~ 325 111 0'5]

that is obtained by solving directly
HIB as shown in [3]. Figures (1) and {2) show the convergence of WZ', W‘f. The value of . after 110s is

[2 4325111 0'5]. To satisfy PE condition as in {(23), a probing signal is added in system
input. Moreover, system’s error evolution is shown in Figure (3) determining the stability of control system
and state’s evolution as shown in Figure 4,

Adaptive dynamic programing based optimal control for a robot manipulator (Dao Phuong Nam)
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Figure 2. Convergence of critic’s parameters
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Figure 3. Convergence of actor’s parameters
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Figure 4, State’s evolution

CONCLUSION
This paper mentioned the problem of optimal control design for a manipulator in combination with

RISE and exact linearization. With the ADP technique, the solution of HIB equation was found by iteration
algorithm to obtain the controller satisfying not only the convergence of weight but also the position tracking.
Offline simulations were implemented to validate the performance and effectiveness of the optimal control

for manipulators.
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This paper studiesan-approximate dynamic programming (ADP) sirategy.of a group.of_
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nonlinear switched systems, where the external disturbances are considered. The neu-
ral network (NN technique is regarded to estimate the unknown part of actor as well as
critic to deal with the corresponding nominal system. The training technique is simul-
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1. INTRODUCTION

It is worth noting that many systems in industry can be described by switched system such as DC-
DC converter [1]-[3], H-bridge inverter [4], multilevel inverter [5], photovoltaic inverter [6]. Although many
different approaches for switched systems have been proposed, e.g., switching-delay tolerant control [7], clas-
sical nonlinear control [8]-[12], the optimization approaches with the advantage of mentioning the input/state
constraint has not been mentioned much. The approaches of fuzzy and neural network as well as ANN, par-
ticle swarm optimization (PSO) technique were investigated in several different systems such as photovoltaic
inverter, transmission line. [13]-[17].

Adaptive dynamic programming has been considered in many situations, such as nonlinear continuous
time systems [18], actuator saturation [19], linear systems [20]-[22], output constraint [23]. In the case of non-
linear systems, the algorithm should be implemented based on Neural Networks (NNs). However, Kronecker
product was employed in linear systems. Furthermore, the data driven technique should to be mentioned to
compute the actor/critic precisely. It should be noted that the robotic systems has been controlled by ADP
algorithm [24]-[25].

Our work proposed the solution of adaptive dynamic programming in nonlinear perturbed switching
systems based on the neural networks. The consideration of the Halminton function enables us obtaining the
learning technique of these neural networks, The UUB stability of closed system is analyzed and simulation

___results illustrate the high effectiveness of given controtler.

Journal homepage: hutp:/fijpeds.iaescore.com
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2. PROBLEM STATEMENTS
Consider the following uncertain nonlinear continuous time switched systems of the form:
v s S s N
: g - — _

€)= fi (€0) + 3 (€N (w + A6, 1) )

a4t

where £ (t) € Q € R™ denotes the state variables and u () € Q, € R™ describes the control variables.

The function 3 : [0,'-]—00”)77?—) = {1,2,...,1} is a information of switching processing, which-is known as

a function with many continuous piecewise depending om timre; and—-1sthe
uncertain smooth vector functions with f; (0) = 0. g; (£) are mentioned as smooth vector functions with the
property Gmin < J|g: (E)l] € Gmax- The switching index S (t) is unknown.

Assurption 1; A (£, t) is bounded by a certain function g (€) as ||& (€. ) < e(€)

" Consider the cost function connected with the uncerfain switched system (1): === ="~

[o.o]

J(E,u) = [ r (€ (r),u(r)) dr @

t

where r(£,u) = £TQ€ + uT Ruand @ = QT >0;R=RT >0
The main purpose is to achieve the state feedback control design and give the upper bound term to
guarantee the closed systems under this controller is robustly stable. Additionally, the performance index (2)is

bounded as J < K (&,u)} £ M.
Definition: The term K (u) is given by the appropriate performance index. As a result, the control
input u* = arg nésl'ln K (£, u) is mentioned as the optimal appropriate performance index methad.

3, CONTROL DESIGN
The obtained nominal system after eliminating the disturbance in switched system (3) is described by:

The performance index of system {3) is modified as (4)

Quew = [ [rie. + (o) ar @

We prove that @1(€,u) with v 2 | RI| is the one of appropriate performance indexes of dynamical
system (1). Define: V* {t) = ITEIHJ Q1 (£, u), we have (5)

Cllh@ieee @

V*{(t) = néinn f {r(g,w) + pP(E) } dX (5)
w u
t
based on nominal system and cost function (4), it leads to Halminton function as (6)
R . av\T
H (&, u, V') =r(€u) + 10" () + ¥ (f: (€) +gi (E)w) (6)
by using optimality principle, the optimal control input can be obtained as (7).
* . 3 -1 T aV*
w() = —5 R (6 5 7
o - We continue to-utilize this-eontrol law-(7)for nenlinear continuous SW system (1) and obtain that:

Theorem 1: The system (1) under the controller w(e) = —3R {9 (6))" G s stable with the

associated Lyapunov function candidate:
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V(t)=J[ {r(€,u) +v0*(€) } dA ®)
where v 2 [|R][.
Proof: Taking the derivative of V under the control input u (§) = —1R (g (€))7 VV*, we imply
Tthat (9): D '
d
ZV=-£Q¢- (ve* (@ - A 6.0 RALE, B) - (wt A6 )" Rlu+AEL) ©)

1t is able to conclude that (10): —

Vi) < -€TQ¢ (10)
Therefore, the system (1) is robustly stable. However, it is impossible to solve directly HIB equation.

Hence, the optimal performance index V* for system (3) can be described based on a NN as (11}

V' =wTo(€) +e(€) (n

where o (z) : B* — RM;a(0) = 0, w € R" is the NN constant weight vector. o () can be found to

guarantee that when N —» oo, we have: € (€) —> 0 and Ve () — 0, so for fixed N, we can assume that:
Assumption 2 “E (6)" < Emax) “VE (‘E)H £ Vémax; VOmin € ”VJ (f)” £ Vomax; “w” % Wmax-
Combining two formulas (10) and (11) we imply (12)

H{gu,V7) = €7Q6+ e (€ + (VV) () - % (VW (@R e (T (VY =0 (2)

qum__qla__gl_?) L:_ads to (13).

YV = (Vo () w+ Ve(£) oy

Obtain the description as (14).

exn = -V (©)7 (4 () + 9:(Ow) + 3V (O 0. () I, (6 Ve (6) (14)

it follows that ep v converges uniformly to zero as N — oo. For each number N, ey is bounded

on aregion as ey < enax. Under the structure of ADP-based controller, a critic NN is computed as (13).

V=dTo(€)=c(e) da= —-IQ-R-I (9: () YV (15)
It is able to achieve that:

s = €7QE + 26" (O + 07V (§) £ (€) ~ Vo © 9 (OR "0 (@ Vo (©T0 (16

The training law is handled based on a steepest descent method:

d .. JE
E—w = —u% (17

with E = %BEJBEHJB-
Remark 1; The weight i is trained to minimize the network error part G = %eEJBeHJB. This result

is obtained from (18).

oG G\
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TheoremfZ.LGonsiderftheffcedbackfcontrolleLin,(li)jnd the critic weight is updated by (18), the

weight estimate error @ = w — 1 and the closed system's state vector z(t) are uniformly ultimately bounded

SETE DY

(UUB).
Proof: Let’s choose the Lyapuniov finction:

V() = VA (8) + Va (), where: Vi (t) = 2%11')@)1" B{t),Va(t) = V" (19

Using the Assumption 3 [/, (£) F g (5} 1= Pmax and thedefinitiom:
1= Fi(E) + 9:i (E)u™Gi = g: (€) R 1g; (6)T 1 Vo = Vo (€); Ve = Ve (£). Taking the derivative of Vi(t),
we imply that:

v,

oy e oo 4.l 1 1
()= =T (‘—ewsf + B Vo %‘wTWG‘«V&'”r' VoGV D)
* /

Vo (z) (pi + %G,; (VoTd + Ve)> (20)
It leads to the estimation: V; (£} < —m1. For the term Va(t) . from (20) we have (21).
Vo= (TV (ot g1 (8 + ) = - (€7QE+ 27 (6) — 3 (VYT
GRGT (VV") + 3 (OVT R LgF (Vo (€)7 6+ Ve (©) + (VT gA o

Assume that p (€) = w ||£]}. From (40) we have (22).

with & = -1 (VYT gRgT (V) + 1 (V)T g:R 1T (Vo ()7 4+ Ve (@) + (Vv b,
Based on the two above assumptions, we have (23).

('gvamax + menx)z g?naxAlnax (R_l)

o=

1
92 ‘<\ Z ('wmaxvomax + v5[113:’()2 g?"gx)\max (R_l) +

+ (wmaxvamax + vEmm{) Gumax™@ “E" 23

It is obvious that (Amin (@) + A7) ||a:||2 — #? 2 my with mp > 0 and we obtain (24).

Vi (t) € —m2 (24)

Remark 2: The coefficients 9, ; ¥z can be chosen by renovating the NN of the optimal performance
index. Moreover, for arbitrary switching index, after mTKT('r%)n_g) the variable ||€]| and ||| tend to the accurate
domains. The ADP coniroller 4 is proposed in (15}, which tends to the neighborhood of u*.

Proof: The deviation of control input is estimated as (25).

-l = 2B (6 @) ((Fe @) o+ @)

é,%ﬁmax,,(ﬂ_l) Guax- (VOmax-U1 + Vemax) = U3 25

Va < — (i (@) + do0) [i€]* + 67 @

Thus the proof is completed.
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4, SIMULATION RESULTS

In this section, we consider the simulations to validate the petformance of the established control

= 3 25+ (w4 Ay (2, 1))
1 Z T W 1""'1 Ll B (Zb)
£y = 21 + 0.5cos (z?) sin (23) — (u + A1 (2,1))
[ &) = —absin(zg) + (u+ Dy (z,1)) 27 B
iy = Lz — cos (z1) cos (23) — (u+ Az (3, 1) R
The initial state vectors can be chosen as (28).
e _ T o
. _z(@)=[5_-5]" ] 28

2 0 10
[0 2];Q=[0 3

The simulation results shown in Figure | and Figure 2 validate the effectiveness of proposed algorithm.

Choosing that the parameter matrices: R = ] ;a=01A=05.

5 T o o
1

4 ! 0 A[\.r

3F ' 1
% 2 oz

1 -

1 -V"V‘*v == -4

R L L : : &5 L - L

[ 20 40 6D 80 100 0 N 40 60 # 1w
time e

Figure 1. The response of x; Figure 2. The response of x2

5.  CONCLUSION

This paper has investigated the ADP problem of switched nonlinear systems under the external dis-
turbance. We consider previously for nominal system by eliminating the disturbance, then using classical
nonlinear control technique. The neural networks have been designed to estimate the actor and critic NN of
iteration. It is possible to develop the learning algorithm with simultanecus tuning. Finally, UUB description
of the closed system is guaranteed under this work.
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